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Note

Determination of Spherical Bessel’s Functions
of an Order Larger than the Argument

The ideas developed in Section 6 of Ref. [1] for the study of the behavior of j.(p)
and n.(p) at the origin and for L > p suggest a direct determination of these functions
for L> p.

Consider the radial equation

d? L(L+1) -
[dpz + (1 - —7)2—)] up) =0 (D
of which
Ji(p) = pirlp), 8i(p) = pn.(p) 2

are respectively the regular and the irregular solutions. For L > p define o;(p) and
B.(p) by the equations

10 = o el ) = ZERRC) enlBn )

and substitute f;(p) and g;(p) into (1). One has
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Nonlinear differential Eqs. (4) show that o,(p) and B.(p) are even functions of p.
Take, then, the developments

®©

d(XL _

71; — Z aﬂp2n+1, (S.a)
n=0

“% = 3 b, (5.b)
n=0

and substitute (5.a) and (5.b) respectively, into (4.a) and (4.b). One has, by equating
to zero the coeflicients of the different powers of p in (4.a) and (4.b), the recurrence
relations for the {a,} and {b,}

ay = —1/2L + 3), (6.a)
n—1
{2(L 4+ n) + 3la, + Z a; Ap 1 = 0, (6.b)
k=0
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and
by = /2L — 1), (1.2)
[2(L —n) — 115, — "f biby 1 = O. (7.b)
k=0

Thus, putting the integrating constants equal to zero, one has for «;(p) and B.(p),
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The series (8) give to j.(p) and n,(p) the correct behavior at the origin and for L > p,
if (2) and (3) are taken into account (see Ref. [1]).

It is worth noting that the developments (8) for «;(p) and B,(p) are series absolutely
convergent for given values of p and L.

Take the series for do;/dp and consider a new set of coefficients {@,’} related to the
{a,} by the definitions

a, = a,’ o™, n=0,1,.., 9)

o being a constant to be specified below. Introducing these relations in (6.b) one finds
that the {a,}, and the {a,’} are subjected to the same recurrence rules, i.e.,

n—1
RL+n+3la, + Y ayar_, =0, n=12,.., 6.b")
k

=0
Now take @, = 1, so that, according to (6.a) and (9) one has
o= —1/2L 4+ 3) (10)
and suppose, by hypothesis, that | @’ | £ 1 for k = 0, 1,..., n — 1. Then, by (6.b")
one obtains

1 n—1
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or, in words, if | ;' | < 1 for any k smaller or equal ton — 1, then | a,’ | £ 1. As this
statement is true for n = 1, then it is equally true by induction for any n

a1 €1, n=0,1,.. (1)

Thus, one can write by (9), (10), and (11)

] n+1
|an|<10|"+1=(‘§m) ) (12)

According to the preceding inequalities for the | @, | one has the majoration rule for
the series (5.a)

The geometrical series on the right-hand side of (13) converges if p < (2L - 3)'/2,
so that the series (5.a) converges absolutely for the same values of p. In practice,
however, one can go beyond the limit (2L + 3)!/2, because the coefficients {a,’}
vanish quite rapidly with increasing »n (Table I). A fortiori, the series for a,(p) also
converges absolutely. The same steps may be taken for the study of the convergence
of the series B (p) and dB,/dp, with only one slight modification.

(13)

2 )n+1

| e
;g(n+3

TABLE 1

The Column Headed by n Contains the Number of Terms Kept in the
Truncated Series for az(p), i.e., (04/2) Trs [aw®/(k + D]

L e ar(p) n 0]
10 1 —0.21758075 x 10! 3 0.71165526 x 10~
30 5 —0.19902319 4 0.42827302 x 10~

=)

30 10 —0.80366138 0.25120574 x 102

¢'The term for k = n — 1 is the first in the series satisfying the condition |a,_p®/2n| < 10~
because jz(p) is calculated with eight exact significant figures.

New coefficients {b,’} may be introduced, defined by the relations
b, = b, e"*, n=0,l1,.., 149

and, consequently, the {b,} and {b,'} satisfy the same recurrence rules (7.b).
Suppose now b, and o are taken, respectively, equal to 1 and 1/(2L — 1) (see (7.2)).
Can it be proved that | b, | < 1 for any » by a method of induction analogous to the
one used in obtaining the same inequalities for the {a,'} ?
As it will be seen below, it cannot, since the proof for the {a,} requires
In/[AL + n) + 3)] < 1 for any n. But the same is not true for the corresponding
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ratio for the {b,'}, i.e., | n/[2(L — n) — 1]| (see (7.b)), which exceeds unity for any n
in the interval 32L — 1) <n <2L — 1.

However, b, can be put equal to 1 — €, where € is a small positive quantity (0 <
€ < 1) calculated in such a way that | b, | £ 1 is true for any »n in the interval 0 &
n < 2L — 2. Then, by mathematical induction, this statement must be true for any
n in the interval 0 £ n < -+ o0 and one has, according to (14)

1 n+l

Ibn ! £ [m s n = 0, 1,... . (15)

Thus, one obtains for the majoration of | dB;/dp | the geometrical series

dlg P «© p2 n+1
5155 [(1 0L = 1)] (16)

™

which converges for any p < [(1 — €)(2L — 1)J*/%. The series (5.b) for dB./dp and
a fortiori its integral series (8.b) for B,(p) are, then, absolutely convergent for such
values of p. In practice, however, the convergence goes beyond the limit (2L — 1)/
(Tables II and III).

TABLE II

The Column Headed by » gives the Number of Terms Maintained in the
Truncated Series for B(p), i.e., (0%/2) ZZ:}, [60%/(k + DI

L p B(p) n n(p)

10 1 0.26356718 x 101 3 0.67221501 x 10°
30 5 0.21266010 4 0.77607176 x 10%
30 10 0.86060835 7 0.69083186 x 10

@ The term for & = n — 1 is the first in the series that satisfies the condition | b,_1p*"/2n| < 10-%
because n,(p) is calculated with eight exact significant figures.

TABLE II1

The Truncated Series for dB./dp (= p E::t bep®) is Calculated
with n Terms, This Number Being Shown in the Column Headed by »®

L P dBldp n p/(2L)
10 1 0.52795680 x 10! 4 0.050
30 5 0.85385653 x 10! 4 0.083
30 10 0.17486921 7 0.167

@ The term for &k = n — 1 is the first obeying the inequality | b,_,p*"* | < 1078,
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The {b,’} also decrease rapidly with increasing n.

A good test for the convergence of the series for dB;/dp (and consequently, for
az(p) and B.(p)) is to compare an approximate solution to dB;/dp and the calculated
series for the same quantity. Such a solution is easily obtained from differential Eq.
(4.b) for dB;/dp. By neglecting the small terms d*8,/dp? and (dB,/dp)? and retaining
the term with the large coefficient (2L)/p, one obtains dB,/dp ~ p/(2L).

Table III gives numerical values of the series for dB,/dp as well as the corresponding
values of its approximate solution p/(2L). As expected they are close to one another.

Relations (9) between the a,, and the @,’, and (14), between the b, and b,’, may
serve the practical purpose of calculating the series for a;(p) and B,(p) as well as their
first derivatives.

Take, for instance, (9) and redefine o as 1/o = p? Therefore a,’ = —p?/(2L + 3)
and one obtains

@‘_e_

1
p
Z 2(n + N’

Finally all the calculations were performed in the Coimbra University SIGMA 5
XEROX computer, using a double-precision FORTRAN-IV programme.
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